

Spring 2021 Schedule

Revision date: 02.01.2021

Fundamental Technology Series:

Course	Description	Delivery	Dates / Times	Cost
Fiber Optic	The Fiber Optics fundamentals course will focus on	Streaming	May 7,14,21,28	\$450
Fundamentals	fiber optic technology including data transmission,		0900 - 1100	
	system design, and repair techniques. Emphasis will			
	be on the troubleshooting and test of applications.			
Fundamentals	This course is designed to provide students with a	Streaming	May 7,14,21,28	\$450
of Fluid Power	basic understanding of the concepts and applications		0900-1100	
	of fluid power technology. The course is an overview			
	of fluid power technology applications; the general			
	concept of fluid power systems and auxiliary			
	components.			

UAS Courses:

Course	Description	Delivery	Dates / Times	Cost
UAS FAA 107	This course is structured to provide the student with	Direct	April 29-30	\$450
	the knowledge to pass the FAA Remote Pilot written		0800-1630	
	test (FAA 107). This certification is required to be a			
	Commercial Drone Operator. Topics include: airport			
	operations, aircraft performance, regulations,			
	meteorology, airspace, maintenance, UAS operations,			
	risk assessment/management. The course fee excludes			
	the FAA exam costs			
UAS Survey	This course will train you how to use drones for	Direct	May 6,7	\$750
Applications	mapping and survey uses. Students will conduct		0800-1630	
	mapping flight with a drone out in the field and then			
	learn how to use photo stitching software to create			
	orthomosaics, 3D maps, 3D models, volumetric			
	surveys, and more. Largely based on the OJI series of			
	drones and Pix4D mapping software, this hands on			
	course will get you started with aerial survey			
	operations.			

Data Management and Technology Application Series:

Course	Description	Delivery	Dates / Times	Cost
Geospatial	This course discusses the underlying technologies	Streaming	April 22-23	\$1,250
Technologies	associated with surveys utilizing the emerging tools within		0800-1630	
Primer	the industry. It provides an overview of the applications			
	and collection of data with UAS and LIDAR, mobile land-			
	based laser scanning survey equipment, and marine-based			
	scanning sonar. Participants will learn the theory behind			
	each of these technologies, field applications, and the			
	integration of the data into a reportable format.			
Advanced	This course provides a foundation in the coordination of	Streaming	March 3-May 21	\$1,260
Marine	maritime surveys from a pre-deployment standpoint.		M, W, F	
Survey &	Students will be expected to have a strong understanding		1510-1750	
Data	of the remote sensing science including capabilities and			
	limitations of the sensor systems to be used. A major			
	focus of the course will be to develop student skillsets for			
	processing and merging marine and terrestrial datasets			
	from a wide range of sources and systems. Significant			
	time will be devoted to proper manipulation of data using			
	commercial and freely-available tools			
CARIS HIPS	The CARIS HIPS and SIPS course is primarily intended	Streaming	May 10-14,	\$1,260
and SIPS	for Data Processors who are required to process		0900 - 1700	
	hydrographic or bathymetric data. This is a hands-on			
	course, in which participants import raw data into CARIS			
	and learn to use the various tools available in CARIS to			
	create final products according to client requirements.			
	This course provides a foundation for the use of acoustic			
	data in the marine environment while focusing on best			
	practices for underwater search, survey, and visualization			
	programs. Multiple sonar systems are presented and are			
	representative of current industry equipment, operations,			
	and practices.			
Introduction	This course introduces the theory and methods of the	Streaming	April 30,	\$1,250
to Terrain	creation, analysis, and applications of digital terrain		May 7, 14, 21	
Modeling	modeling. Specific topics include terrain data formats,		0800-1200	
	including LIDAR, photogrammetry, terrain surface			
	modeling, and terrain visualization. The course includes			
	computer exercises in the generation and processing of			
	digital elevation models using GIS and image processing			
	software packages including QGIS (open source GIS			
	software) and Autodesk's Recap and Civil 3D. Using			
	publicly available terrain data, including LIDAR, we will			
	develop 2D & 3D digital terrain models suitable for use in			
	agriculture, construction, engineering, surveying, forestry,			
	and environmental analysis.			